Part Number Hot Search : 
100GD 00145 54HC164 MLL5543B RODUCTS V122K CC4314B 03YAA
Product Description
Full Text Search
 

To Download AUIRFP1405 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 AUIRFP1405 hexfet ? power mosfet  features 
          !    "#$%& & '  ( )  ('
    & 
 
  '&* +   (,-)%&  
' .' / 0 description specifically designed for automotive applications, this stripe planar design of hexfet? power mosfets utilizes the latest processing techniques to achieve low on-resistance per silicon area. this benefit combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the de- signer with an extremely efficient and reliable device for use in automotive and a wide variety of other applications. absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. hexfet ? is a registered trademark of international rectifier. * qualification standards can be found at http://www.irf.com/ automotive grade gds gate drain source to-247ac AUIRFP1405 s d g d v (br)dss 55v r ds(on) typ. 4.2m max 5.3m ( 10 i d (package limited) 95a s d g parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current a e ar repetitive avalanche energy mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds (1.6mm from case ) mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  ??? 0.49 r cs case-to-sink, flat, greased surface 0.24 ??? c/w r ja junction-to-ambient ??? 40 -55 to + 175 300 10 lbf  in (1.1n  m) 310 2.0 20 max. 160  110  640 95 1060 530 see fig. 12a, 12b, 15, 16

2 www.irf.com s d g    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.12mh r g = 25 , i as = 95a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population, starting t j = 25c, l = 0.12mh, r g = 25 , i as = 95a, v gs =10v.  calculated continuous current based on maximum allowable junction temperature. package limitation current is 95a. r is measured at t j of approximately 90c. s d g static electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 55 ??? ??? v ( / . 0.0 / ( . . ( .0 .0 0 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 dynamic electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units q g total gate charge ??? 120 180 q gs gate-to-source charge ??? 30 ??? nc q gd gate-to-drain ("miller") charge ??? 53 ??? t d(on) turn-on delay time ??? 12 ??? t r rise time ??? 160 ??? t d(off) turn-off delay time ??? 140 ??? ns t f fall time ??? 150 ??? l d internal drain inductance ??? 5.0 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 13 ??? from package and center of die contact c iss input capacitance ??? 5600 ??? c oss output capacitance ??? 1310 ??? pf c rss reverse transfer capacitance ??? 350 ??? c oss output capacitance ??? 6550 ??? c oss output capacitance ??? 920 ??? c oss eff. effective output capacitance ??? 1750 ??? diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 95 (body diode) a i sm pulsed source current ??? ??? 640 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 70 110 ns q rr reverse recovery charge ??? 170 260 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) m v ds = 25v conditions v ds = v gs , i d = 250 a v gs = 0v, v ds = 1.0v, ? = 1.0mhz v ds = 25v, i d = 95a  i d = 95a v ds = 44v v gs = 20v v gs = -20v v gs = 10v  v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c mosfet symbol v dd = 28v i d = 95a r g = 2.6 conditions v gs = 10v  v gs = 0v ? = 1.0mhz v gs = 0v, v ds = 0v to 44v  v gs = 0v, v ds = 44v, ? = 1.0mhz conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 95a  t j = 25c, i f = 95a, v dd = 28v di/dt = 100a/ s  t j = 25c, i s = 95a, v gs = 0v  showing the integral reverse p-n junction diode.

www.irf.com 3 1 .' /     2/'  3  /425&!!6/6! 117 +&8/ 9
7%.":";'  ;' / &6 111- &   6 qualification information ? to-247 n/a qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level. charged device model class c5 (+/- 2000v) ??? aec-q101-005 moisture sensitivity level rohs compliant yes esd machine model class m4 (+/- 700v) ??? aec-q101-002 human body model class h2 (+/- 4000v) ??? aec-q101-001

4 www.irf.com fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60 s pulse width t j = 25c t j = 175c 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 0 20406080100 i d, drain-to-source current (a) 0 20 40 60 80 100 120 140 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380 s pulse width

www.irf.com 5 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v vds= 28v i d = 95a for test circuit see figure 13 0.2 0.6 1.0 1.4 1.8 2.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc a nce

6 www.irf.com fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 95a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.2529 0.00080 0.2368 0.014283 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri

www.irf.com 7 q g q gs q gd v g charge ": fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 500 1000 1500 2000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 16a 20a bottom 95a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250 a 1k vcc dut 0 l

8 www.irf.com fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 95a

www.irf.com 9 fig 17.  <   ! %' for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period 0    
   0 + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&# 

 v ds 90% 10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms

10 www.irf.com 

 
   
 
 
                
 
    
   

    !!

!!  %  =>=  ??>?<?<
>
' , (  @'2 3 % 

www.irf.com 11 ordering information base part number package type standard pack complete part number form quantity AUIRFP1405 to-247 tube 25 AUIRFP1405

12 www.irf.com  
 ! 
" 
   
# 
$  

  % 

  
   #      
  $ 
$ 
$  #$
   
    
  #

" 
  
"     #    &
   
    '(!)  * 
#  "
     +   
    

   
 
 (  
  ,  -  
   
 
      
   

   
  

      



     
 
 
  - 



" .
   +
"    +
     *   
"     

" /*   

 " #  + $  
 

   
     
"    
  
" 



      % 
      


    . 0        


$      #
+
 
 
 

      
   

   

     "      


 

 "




$ $ 
$
        
 

 
 

 #  
      
  
  
  
     
 
"  , 

   
       #  
      "   

  
 "   
     # #
 * 

" 

   

      #
 
 

 #  
      
 
"  
   
  $ $ 
  0  
   "    
 
    "$    

      
 $  
"  

     
          


    
 , "  
 
"   1  2"  
      
"    
  0

$ 2" 
 "
   

 
   $ "$ 
$

$
   



 
$ $ 

$
 *$
 


 " 
  $  "   "$
" 
   
 , "  


     
  0 $ #   

 
 
  
     

       3"    
 
" 
 "    4 (" 4(    !1 
  $
 
 

    4( 
" 
 +  "  
 
"$
 
   

 2" 
  

  

"         " 4(
 
"5
$ 

 +  
" 
  $  "
   2" -   
 
  "
 "   
 
 

 
 " +         
        
#

  #        
 
 " 
 
  13.1 67898 + 
 


     
 '(!) 2" 
  

  
$   " 
" 5
   
#

$      
" 
     +  ( '&&,&  34 
 % &5!!6/6! /!       !"#$ "%  $ &
'()*
+,


▲Up To Search▲   

 
Price & Availability of AUIRFP1405

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X